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Abstract
This study addresses the limitations of inexpensive, high-frequency ultrasound biomicroscopy (UBM) systems in visualizing 
small ocular structures and anatomical landmarks, especially outside the focal area, by improving image quality and visibil-
ity of important ocular structures for clinical ophthalmology applications. We developed a generative adversarial network 
(GAN) method for the 3D ultrasound biomicroscopy (3D-UBM) imaging system, called Spatially variant Deconvolution 
GAN (SDV-GAN). We employed spatially varying deconvolution and patch blending to enhance the original UBM images. 
This computationally expensive iterative deconvolution process yielded paired original and enhanced images for training 
the SDV-GAN. SDV-GAN achieved high performance metrics, with a structural similarity index measure (SSIM) of 0.96 
and a peak signal-to-noise ratio (PSNR) of 36.92 dB. Structures were more clearly seen with no noticeable artifacts in the 
test images. SDV-GAN deconvolution improved biometric measurements made from UBM images, giving significant differ-
ences in angle opening distance (AOD, p < 0.0001) and angle recess area (ARA, p < 0.0001) measurements before and after 
SDV-GAN deconvolution. With clearer identification of apex, SDV-GAN improved inter-reader agreement in ARA meas-
urements in images before and after deconvolution (intraclass correlation coefficient, [ICC] of 0.62 and 0.73, respectively). 
Real-time enhancement was achieved with an inference time of ~ 40 ms/frame (25 frames/s) on a standard GPU, compared 
to ~ 93 ms/frame (11 frames/s) using iterative deconvolution. SDV-GAN effectively enhanced UBM images, improving 
visibility and assessment of important ocular structures. Its real-time processing capabilities highlight the clinical potential 
of GAN enhancement in facilitating accurate diagnosis and treatment planning in ophthalmology using existing scanners.
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Introduction

Ultrasound biomicroscopy (UBM) is a high-frequency, high-
resolution, inexpensive imaging modality that is used for 
imaging the anterior segment of the eye. UBM is crucial 
for imaging ocular structures such as the scleral spur, iri-
docorneal angle, and ciliary body, providing insights into 
glaucoma pathophysiology [1]. UBM has the unique capa-
bility of visualizing ocular structures beyond the opaque iris 
(i.e., ciliary body) or in case the transparency of the anterior 
segment is compromised due to an injury or ocular diseases. 
Commercially available UBM systems (i.e., Ellex EyePrime 
or Quantel Aviso) provide only 2D views of the anterior seg-
ment that do not provide sufficient anatomical context [2]. 
This limitation necessitated the development of 3D-UBM to 
establish the anatomical context [3–8].

Commercially available 2D-UBM systems, consisting 
of a mechanically swept, single transducer element, lack 
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dynamic focusing capability, resulting in degraded image 
quality beyond the focal depth of the probe. This degrada-
tion occurs due to the spatially varying wide point-spread 
function (PSF) of the ultrasound (US) imaging system. The 
spatially variant PSF can cause blurring of crucial ocular 
structures relevant to glaucoma and other conditions. Many 
biometric measurements related to the anterior chamber are 
obtained from 2D-UBM images for glaucoma diagnosis and 
surgeries, including anterior chamber depth and width, lens 
vault, iris curvature, iris root distance, trabecular-ciliary 
process distance, iris-ciliary process distance, angle meas-
urements, lens thickness, anterior lens radius of curvature, 
anterior segment length, and more [9–15]. Accurate meas-
urements depend on the localization of different anatomical 
landmarks, which PSF blurring can impact. Deconvolution 
techniques mitigate the blurring effects and improve the 
visualization of such structures. Deconvolution approaches 
in imaging can be classified as blind or non-blind. In blind 
deconvolution, the PSF is unknown or poorly determined, 
and the algorithm estimates it from the image set through 
iterative [16] or non-iterative [17] approaches, followed by 
deconvolution. Non-blind or deterministic deconvolution 
utilizes a known PSF to enhance the image. The PSF can 
be measured based on the ultrasound system’s response to 
scatterers or predicted theoretically [18]. Previous studies 
have primarily focused on a spatially invariant PSF for com-
putational simplicity [19, 20]. Although these approaches 
perform well within the focal depth, their performance 
beyond the focal plane is limited due to the severe spatial 
variability of the PSF away from the focal depth. Spatially 
variant deconvolution approaches encounter issues with 
patch-wise deconvolution, resulting in edge artifacts due 
to patch-blending problems [21]. An alternative approach 
involving general PSF derivation based on continually vary-
ing PSF has been proposed but is unsuitable for large images 
[22]. Optimization-based spatially variant PSF deconvolu-
tion methods are computationally expensive, making them 
challenging to implement in a real-time clinical setting. 
3D-UBM generates approximately a thousand images per 
scan; therefore, a faster deconvolution approach is required 
to ensure feasibility in a clinical setting. Particularly for our 
3D-UBM [3, 4], which generates approximately a thousand 
images per scan, a faster deconvolution approach is required 
to ensure feasibility in a clinical setting.

Deep learning has demonstrated remarkable success 
in medical imaging tasks, i.e., anatomy or disease classi-
fication, detection, and segmentation [23–28]. Generative 
adversarial networks (GANs), a subgroup of deep learning 
models, have been applied to tasks such as image synthesis, 
denoising, and deblurring [29–41]. GANs consist of two 
competing networks, a generator and a discriminator, and 
leverage these two networks to improve performance on a 
specific task. GANs can be supervised, requiring source 

and target domain image pairs for training, or unsupervised, 
eliminating the need for such pairs. Isola et al. proposed 
pix2pix [29], a supervised conditional GAN model based on 
cross-entropy and L1 loss (mean absolute error) that can per-
form image-to-image translation tasks. Wolterink et al. used 
the pix2pix framework for low-dose CT denoising [30]. Was-
serstein distance has also been used along with perceptual 
loss and L2 loss (mean squared error) for CT image denois-
ing [32] and deblurring [33]. Several 3D-GAN approaches 
have been developed in MR and CT super-resolution images 
[34, 37, 38]. Few studies have explored the application of 
deep learning in image deconvolution [39–41], especially 
in the case of highly spatially variant kernels such as those 
seen in US. Tao et al. demonstrated that using multi-scale 
image inputs for encoder-decoder-based recurrent network 
yielded the best performance in the image deblurring task 
on natural images [40]. Lee et al. proposed a generalized 
deconvolution approach to solve image degradation [41]. 
These studies performed blurring of natural images with a 
single blurring function to create blurred image-ground truth 
image pairs for training deep neural networks. This differs 
from 3D-UBM or US images, as the imaging system has a 
spatially variant PSF and no ground truth.

In this work, we framed the image deconvolution task as 
an image-to-image translation problem. We created paired 
training data using original images and spatially variant 
deconvolved images obtained via a traditional iterative 
approach. This study aims to provide.

•	 a comprehensive analysis to assess the effects of decon-
volution in visualizing small objects through a phantom 
and in vivo study,

•	 a new deep learning approach, Spatially Variant Decon-
volution GAN (SDV-GAN), that demonstrates improve-
ment in the baseline image-to-image translation model, 
and

•	 evaluation of the clinical impact of SDV-GAN on visuali-
zation and biometric measurements of ocular structures.

Materials and Methods

Image Acquisition Using 3D‑UBM

We developed the 3D-UBM system using the Quantel Aviso 
50 MHz probe in conjunction with a motorized translation 
stage (MTS50-Z8, Thorlabs Inc.) and a surgical microscope. 
The probe was attached to a custom-printed holder on the 
stage. The motor carefully moves the probe across the eye 
at a constant speed, enabling image acquisition in the slow 
scan direction (x-axis). Each image acquired is in the 2D y–z 
plane. The system was calibrated to acquire a total of 1000 
frames in each eye. The probe was fitted with a ClearScan 
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cover to acoustically couple the probe to the eye without 
introducing any discomfort. This configuration is shown in 
Fig. 1.

UBM Image Enhancement via Iterative 
Deconvolution Approach

Figure 2 shows the processing pipeline for creating image-
enhanced image training pairs for supervised training. Each 
2D image (y–z) from a 3D-UBM volume was divided into 
N overlapping patches (50% overlap), signifying N separate 
depth intervals. The analytic PSF at each depth was esti-
mated using the Field II simulator for point scatterers [42, 
43]. Each patch was deconvolved iteratively using the depth-
appropriate PSF. We used the Richardson-Lucy approach 
for a fixed number of iterations. We used five iterations, as 
more iterations generated more noise. Following deconvolu-
tion, the overlapped patches were blended by averaging to 
generate an enhanced image. We repeated the process for 
each 2D image in an entire 3D volume to create original and 
enhanced image pairs.

Spatially Variant Deconvolution Generative 
Adversarial Network (SDV‑GAN)

We approached the challenge of spatially variant decon-
volution by framing it as a task of translating images 
from one form to another. To accomplish spatially variant 
deconvolution, we selected the pix2pix [29] as the back-
bone architecture, a variant of conditional GAN known for 
its success in image translation applications. Conditional 
GANs are particularly useful when the input is known, 
and the architecture of a GAN involves two networks: a 
generator and a discriminator. Baseline generator network 
is U-Net [24] shaped and was designed with an encoder, 
a bottleneck layer, and a decoder, connected by skip con-
nections. The network configuration is detailed in Fig. 3. 
We modified each encoding layer (blue) by adding residual 
connections, as residual connections have shown to avoid 
vanishing gradient problems in deep network training by 
introducing shorter paths [44]. We also introduced an 
attention gate [45] between the decoding layer (orange) 
and its corresponding encoding layer to enable only rel-
evant information to flow through the skip connections. 

Fig. 1   3D-UBM imaging 
system setup. The probe was 
mounted on the motorized 
stage with a custom 3D-printed 
adapter (left). Gently moving 
the probe across the eye at a 
constant speed produces a series 
of 2D-UBM images (middle) 
that can be converted to a 3D 
volume of the anterior segment 
of the eye (right)

z

x (slow 
scan)

y

2D-UBM stack

Y

X

Z

3D-UBM volume

Fig. 2   Enhancing UBM images using patch-wise, spatially variant deconvolution. Each image is divided into overlapping patches, and each 
patch is deconvolved and blended to create an enhanced image
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Details of the residual block and attention gate are pro-
vided in Fig. 3. The numbers of filters in the encoder are 
64, 128, 256, 512, 512, 512, and 512. Features from a 
decoding layer and the output of the attention gate are 
concatenated as inputs to the next decoding layer. The 
generator takes the original image I as input and maps it 
to produce an estimate (Ĩ) of the enhanced image Ī. The 
discriminator employed a PatchGAN approach, distin-
guishing between patches from the generated enhanced 
image Ĩ and the real enhanced image Ī. The training pro-
cess included minimizing the discriminator’s adversarial 
cross-entropy loss and the generator’s loss, which com-
bined adversarial loss with the L1 loss computed between 
the estimated enhanced image Ĩ and the actual enhanced 
image Ī. Through the minimization of these losses, the 
generator was able to generate enhanced images.

Input images were rescaled to fall within the range of 
[− 1, 1], a practice employed to ensure training stability 
for the GAN [18]. We utilized the Adam optimizer, setting 
the learning rate at 0.0001 for both the discriminator and 
generator. A balance between L1-loss and cross-entropy 
loss was maintained at a 100:1 ratio. The output images 
generated by the generator were also rescaled within the 
[− 1, 1] range due to the use of the hyperbolic tangent 
(tanh) function as the final activation. The models under-
went 100 training epochs, with the highest structural simi-
larity index (SSIM) [31] achieved on the validation set 
determining the best-performing model, which was then 
saved for testing.

Experimental Details

Dataset

Dataset for GAN Training

We utilized a dataset consisting of 16 in vivo eye vol-
umes obtained through the 3D-UBM system. Each image 
within the volume measured 1100 × 384 pixels and fea-
tured a spacing of 10 µm × 42 µm in the fast scan direction 
(y–z plane). Each image was cropped axially and padded 
laterally to 1024 × 512 for SDV-GAN input to make the 
input size divisible by 2N . For each eye, we captured 1000 
consecutive image frames. Consequently, the spacing in 
the slower scan direction (x or nasal-temporal) was deter-
mined by the patient’s eye length in that dimension and 
the clinician’s decision. Typically, we imaged an approx-
imately 16 mm region, yielding a spacing of 16 µm in 
the slow scan direction. The entire dataset was supplied 
by the Center for Pediatric Ophthalmology and Adult 
Strabismus at Rainbow Babies and Children’s Hospital 
under an approved institutional review board (IRB) pro-
tocol (STUDY20190764). Written informed consent was 
obtained from each participant. Before scanning, patients 
received general anesthesia. Both normal and eyes with 
ocular pathology were considered for GAN training. 
From each volume, we selected 250 images, totaling 4000 
images. Out of these, 12 eye volumes (3000 images) were 
designated for GAN training, two volumes (500 images) 
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Fig. 3   Network architecture for SDV-GAN-based deconvolution. Original image is the input to the generator, and the generated and enhanced 
image pairs are inputs to the discriminator
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for validation, and another two volumes (500 images) for 
testing purposes.

Dataset for Evaluation of Biometric Measurements

Forty-seven images were selected from 3D-UBM eye 
volumes of 18 patients with no history of glaucoma. The 
scleral spur was detected by three ophthalmologists (5, 6, 
and 18 years of experience), and the locations were aver-
aged. Each image can be divided into two radial images, 
generating 94 radial images (Fig. 4). The spur could not be 
accurately determined in nine images, leading to 85 images 
for measurement. Following the accurate localization, two 
expert readers (a senior Ph.D. student and a senior medical 
student) made biometric measurements of the eye images. 
The measurements are trabecular-iris angle (TIA), angle 
opening distance (AOD), and angle recess area (ARA); all 
measured 500 µm away from the scleral spur [46].

Performance Metrics

To evaluate the performance of deconvolution in the digi-
tal phantom and SDV-GAN in image enhancement, we 
employed the following metrics: (1) Contrast-to-Noise Ratio 
(CNR): evaluates the detectability of anatomical structures 
relative to the background, (2) Mean Absolute Error (MAE) 
and Root Mean Squared Error (RMSE): quantify pixel-wise 
differences between the generated and reference images, (3) 
Peak Signal-to-Noise Ratio (PSNR): assesses reconstruction 
quality, with higher values indicating better preservation of 
image details, and (4) Structural Similarity Index (SSIM): 
measures perceptual similarity between the enhanced and 
reference images.

Results

Enhancing Contrast and Resolution of Small 
Features in UBM Through Deconvolution

Figure 5 demonstrates the effectiveness of deconvolution 
in enhancing image quality. In single-element mechanical 
sweep UBM or US imaging systems, the loss of contrast 
in smaller features arises due to the wide PSF at various 
depths. To mitigate this effect and restore the pre-convolved 
version of the image, deconvolution can be employed. By 
utilizing deconvolution, the blurring caused by the PSF can 
be reversed, leading to improved image quality. The simu-
lation was carried out using the Field II ultrasound simula-
tor. The original and enhanced “disks” were presented in 
log-scaled images. These disks had increasing diameters to 
showcase the impact of deconvolution on different-sized fea-
tures. The deconvolution process significantly improved the 
CNR, with CNR improvement ranging from 3.9 to 10.7 dB. 
This improves the clarity of the disks, making them dis-
tinctly visible. We observe the highest CNR improvement in 
visualizing the smallest disk, demonstrating the importance 
of deconvolution in identifying small ocular structures. The 
PSF required for deconvolution was estimated based on the 
characteristics of the Quantel 50 MHz UBM system.

Physical Phantom Study: Deconvolution of UBM 
Images of a Wire Phantom

To evaluate the effectiveness of spatially variant deconvo-
lution, we imaged a wire phantom at different depths and 
stitched those images together (Fig. 6). Each of the images 
is deconvolved using the spatially variant deconvolution 
approach discussed previously. Visual quality assessment 
shows that the point object before deconvolution suffers 
from more spreading away from the focus. After spatially 
varying deconvolution, the effects are minimized.

Effects of Deconvolution in Visualization of Ocular 
Anatomy

Image quality is essential for precise assessment of ocular 
structures in the anterior segment, especially when calculat-
ing biometrics crucial for diagnosis and treatment monitor-
ing. Qureshi et al. observed low agreement among readers 
in ciliary body-related biometric measurements, attributing 
this to the deeper location of the ciliary body within the tis-
sue [14]. Additionally, locating anatomical landmarks like 
the scleral spur and Schlemm’s canal is challenging due to 
the need for better contrast between different tissue types. 
Spatially varying deconvolution addresses the issue of image 

Fig. 4   Multiplanar reformatting of 3D-UBM volume and scleral spur 
localization. Multiplanar reformatting allows the extraction of radial 
images from the volume that covers the entire 360° of the anterior 
segment. Scleral spur can be located in these radial images, which is 
crucial to anterior segment biometric measurements
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quality degradation with depth, compensating for the lack 
of focus outside the focal area. Figure 7 shows the effective-
ness of deconvolution in visualizing small structures, i.e., 

Schlemm’s canal in clinical images. Schlemm’s canal is an 
important tissue in fluid drainage in the eye. In Schlemm’s 
canal visualization, contrast is greatly improved, suggest-
ing that computational enhancement of UBM images can be 
useful. Figure 8 shows a 3D volume rendering of the ciliary 
body before and after convolution. Deconvolution improves 
3D visualization in the ciliary body, which will be useful in 
biometric measurement.

Performance Analysis of Proposed SDV‑GAN

We compared SDV-GAN performance against baseline 
approaches to generate enhanced images similar to the itera-
tive deconvolution approach. SDV-GAN produces visually 
similar images to the iterative approach without introduc-
ing any major artifacts while also outperforming the base-
line model (i.e., pix2pix). Three representative example 
images are shown in Fig. 9. Spatially varying deconvolu-
tion (iterative or SDV-GAN) improves the contrast of ocu-
lar structures, i.e., ciliary processes and scleral spur, in the 
images. Table 1 shows a quantitative comparison of the 
number of model parameters, inference time, and perfor-
mance metrics of SDV-GAN, the baseline model without 
any attention gate or residual blocks, the baseline model 
with an attention gate, and the baseline model with residual 
blocks. We calculated commonly used metrics for image-to-
image translation: mean absolute error (MAE), root mean 
squared error (RMSE), peak signal-to-noise ratio (PSNR), 

100 um

Simulation images of 
variable sized disks using 
Field II US Simulator

Enhanced images of the same disks after 
deconvolution using Richardson-Lucy algorithm

PSF
Received B-mode 
images

Unknown tissue 
reflectivity 

Fig. 5   Deconvolution of ultrasound (US) images of simulated disks. 
During imaging, the target object is convolved with the PSF of the 
US imaging system (left). Deconvolution on simulated images shows 

CNR improvement between the original (right-top) and enhanced 
disks (right-bottom) on rescaled 8-bit images. The disks are of 
increasing diameter (25 µm, 50 µm, 75 µm, and 100 µm, respectively)

Fig. 6   UBM images of a 40-µm diameter wire before (left) and after 
(right) deconvolution. The wire was imaged at different depths and 
deconvolved with depth-appropriate PSF
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and structural similarity index (SSIM). For 8-bit images, 
the mean MAE and mean RMSE were ~ 0.97% and ~ 1.43% 
of the intensity range. The mean PSNR value of 36.92 dB 
shows excellent reconstruction quality. SSIM has been pro-
posed as a better indicator of image similarity compared 
to RMSE and PSNR. The SSIM range is [− 1,1]. Our pro-
posed approach achieves a structural similarity score of 
0.96, which ensures high similarity between the iterative 
and SDV-GAN approaches. One-way ANOVA test on SSIM 
scores shows a p-value < 0.00001, indicating the mean of 
SSIM of SDV-GAN in test images is significantly different 
than the baseline, the baseline model with an attention gate, 
and the baseline model with residual blocks.

Attention gate learns to suppress irrelevant regions of 
an image while focusing on important structures relevant 
to a specific task [45]. In our experiment, we observed 
a small improvement (∆SSIM = ~ 1%) over the baseline 

model by introducing the attention gate in the generator. 
We also introduced residual connections in each encoder 
layer, which provide better learning by mitigating the 
vanishing gradient problem. Residual connections in the 
encoder showed good improvement over the baseline only 
(∆SSIM = ~ 7%) in the test images. SDV-GAN combines 
the effects of both the attention gate and the residual con-
nection and improvement training of the GAN. Adding 
both features to SDV-GAN, we demonstrated improvement 
in all metrics. Figure 10 shows a representative-generated 
enhanced image from each model. We observed SDV-
GAN’s superior performance in mimicking the compu-
tationally expensive iterative spatially deconvolution 
approach. The artifact in difference images comes from 
patch-based deconvolution and stitching. We observed less 
artifact in SDV-GAN-generated images compared to other 
models.

Fig. 7   2D-UBM image of 
Schlemm’s canal (red arrow) 
and collector channel (yellow 
arrow), before (red box on 
top-left) and after (top-right) 
deconvolution. Subsequent 
deconvolved frames also show 
contrast improvement (bottom)

Fig. 8   3D volume rendering of 
ciliary body before and after 
deconvolution within the same 
dynamic range. After deconvo-
lution, the edges of the ciliary 
body are more visible and easily 
distinguishable
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Effects of SDV‑GAN in Biometric Measurements

Not only does deconvolution affect image quality, but it 
can also affect biometric measurements made from UBM 
images. Two experts performed biometric measurements on 
85 radial UBM images that were acquired by the 3D-UBM 
system. Table 2 shows how biometric measurements change 
before and after the SDV-GAN approach on three com-
monly measured biometrics in UBM images. We observed 
significant differences in mean AOD500 and ARA500 

measurements for both readers. However, differences in TIA 
measurements were not conclusive. All three metrics rely on 
the localization of anatomical landmarks, i.e., the apex of the 
iris recess and the scleral spur, which are crucial for diagnos-
ing glaucoma. Accurate localization is difficult depending on 
the types of glaucoma, and reader variability exists even in 
the cases where these landmarks are visible. Deconvolution 
improves contrast and can lead to better localization of the 
apex and spur, which is crucial to these biometrics. Decon-
volution can improve agreement between readers in some 

3D-UBM images with no 
enhancement

3D-UBM images with iterative 
deconvolution

3D-UBM images with SVD-
GAN

Fig. 9   Comparison of SDV-GAN and iterative deconvolution images. 
Original, iteratively enhanced, and SDV-GAN-enhanced images are 
shown in the first, second, and third columns, respectively. SDV-
GAN produces visually similar images to the iterative approach and 

shows higher contrast in distinguishing ciliary processes (top), small 
anechoic region (middle), and scleral spur localization (bottom) com-
pared to images with no enhancement

Table 1   Performance comparison of different models with respect to iterative deconvolution on 8-bit test images, best performance hihglighted 
in bold

Models Metrics

Total generator 
parameters (in mil-
lions)

Inference 
time (ms)

Structural similar-
ity index (SSIM)

Mean absolute error Root mean 
squared error

Peak signal-
to-noise ratio 
(PSNR)

Baseline (pix2pix) 54.43 31.76 0.85 ± 0.01 4.91 ± 0.13 6.97 ± 0.83 31.32 ± 0.93
Baseline + attention gate 57.86 33.94 0.86 ± 0.02 4.46 ± 0.57 6.86 ± 1.11 31.50 ± 1.31
Baseline + residual blocks 72.59 37.42 0.92 ± 0.002 3.42 ± 0.21 4.97 ± 0.40 34.24 ± 0.70
SDV-GAN 76.01 39.92 0.96 ± 0.001 2.48 ± 0.15 3.65 ± 0.29 36.92 ± 0.69
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biometric measurements. We calculated the intra-class cor-
relation coefficient (ICC) to evaluate the agreement between 
the two readers. Table 3 shows the agreement between read-
ers 1 and 2 before and after deconvolution for three separate 
measurements. Agreement improved after deconvolution for 
the ARA measurement, while agreement in TIA and AOD 
measurements did not change.

Speed Comparison Between Iterative 
and GAN‑Based Approaches

We compared the performance of deconvlucy function of 
MATLAB with our proposed GAN-based deconvolution. 

Iterative Lucy-Richardson approach has a time-complex-
ity of O(mn) , where m and n are the number of rows and 
columns in the image. Also, the algorithm scales linearly 
with respect to the number of iterations. 3D-UBM pro-
duces volumes of dimension 1100 × 384 × 1000. To pro-
cess a single frame with a constant PSF across the image, 
with iteration number, i = 5, MATLAB’s implementation 
takes an average of 85 ms to complete. With patch-wise 
spatially variant deconvolution, MATLAB’s implementa-
tion takes an average of 93 ms to complete. GAN-based 
deep learning approaches (baseline or SDV-GAN) can pro-
cess a single frame within 32–40 ms, leading to almost 
3 × faster processing (Table 1). Attention gate provides a 
small increase in model performance without introduc-
ing many learnable parameters. In comparison, residual 
blocks increase model performance by a large margin, at 
the expense of introducing large numbers of model param-
eters. SDV-GAN incorporates both features. The increased 
number of model parameters and slightly higher inference 
time is justified with higher performance, and it does not 
impact clinical usability. All experiments were performed 

Fig. 10   Image enhancement performance evaluation of SDV-GAN 
and baseline models in generating target-enhanced images. Sample-
generated enhanced images from the baseline model (without atten-
tion gate or residual blocks), baseline with attention gate, baseline 
with residual blocks, SDV-GAN, and the actual target enhanced 

image via iterative deconvolution are shown from top-left to top-
right. Bottom row shows the difference images between the output 
of each model and the target. Lowest mean absolute difference was 
observed in SDV-GAN-generated images

Table 2   Comparison of 
biometric measurements before 
and after deconvolution

Reader 1 Reader 2

TIA500 Significant difference in mean (p < 0.0001) No significant difference in mean (p > 0.05)
AOD500 Significant difference in mean (p < 0.0001) Significant difference in mean (p < 0.0001)
ARA500 Significant difference in mean (p < 0.0001) Significant difference in mean (p < 0.0001)

Table 3   Inter-reader agreement 
(ICC-score) between readers 
1 and 2 before and after 
deconvolution

Before 
SDV-
GAN

After 
SDV-
GAN

TIA500 0.91 0.90
AOD500 0.92 0.92
ARA500 0.62 0.73
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in an Alienware Aurora R13 PC (24-core CPU, 128 GB 
RAM, NVIDIA RTX 3090) and MATLAB R2022b.

Conclusions

In this work, we described a spatially variant deconvolu-
tion approach using a generative adversarial network (SDV-
GAN) for improved visualization of small ocular structures. 
US imaging systems have depth-dependent, spatially vary-
ing PSF. Spatially variant deconvolution approaches are 
not trivial and do not scale well for large images. 3D-UBM 
and clinical UBM produce high-resolution US images of 
the anterior segment of the eye. From these images, several 
biometrics (e.g., TIA, AOD, ARA) are measured for glau-
coma diagnosis and monitoring. Our experiments showed 
that biometric measurements before and after deconvolu-
tion show significant changes in AOD (p < 0.0001) and ARA 
(p < 0.0001) measurements. We also observed reader agree-
ability improvement (ΔICC = 0.11) after deconvolution in 
ARA measurement. This is likely due to the better contrast 
leading to better localization of the apex post-deconvolution.

SDV-GAN can mimic computationally expensive spa-
tially variant iterative deconvolution approaches and be 
deployed in real-time US analysis. 3D-UBM produces 
1000 images per eye volume at 10–15 frames/s. Spatially 
variant deconvolution in real time is a scaling challenge. 
To overcome this, we developed SDV-GAN, where itera-
tive spatially variant deconvolved images were used as 
ground truths for training. Comparison between ground 
truth and generated images shows high structural similarity 
(SSIM = 0.96 ± 0.001), ensuring the generated images are 
similar to what we observe via the iterative approach. In 
our experiments, we found that the iterative approach can 
process a single UBM frame (1100 × 384) in 85–93 ms, 
leading to a frame rate of approximately 10–12 frames/s. 
In reality, it will be lower in low-performance computers 
that US systems are shipped with, or in point-of-care US. In 
comparison, our SDV-GAN-based approach processes a sin-
gle image frame in 40 ms, which leads to a processing frame 
rate of ~ 25 frames/s. Commercially available UBM probes 
(Quantel, EyePrime) have frame rates in the range of 10–15 
frames/s. This implies the real-time processing of images is 
possible, allowing clinical use. With the added complexity 
of SDV-GAN compared to the baseline model, it is slightly 
more computationally expensive. However, the real-time 
processing is not affected. Since our proposed approach 
improves biometrics measurements, even slightly slower 
processing speeds may be acceptable in clinical workflows 
where real-time visualization is not always required (e.g., 
post-processing for diagnostic analysis). There are a few 
limitations to this study. First, the dataset consists of only 
16 eyes, which limits the statistical power of our findings. 

Additionally, there is an inherent correlation among slices 
from the same eye, which may affect model training and 
evaluation. While our approach leverages a large number of 
images, the dependence among slices must be considered 
when interpreting results. Furthermore, the current study 
focuses primarily on healthy eyes, and broader validation 
in diverse patient populations, including those with ocular 
pathology, is necessary. Future work will involve multi-
center studies with a larger, more diverse cohort to improve 
the generalizability and clinical applicability of the proposed 
method. Second, as our training pairs were created using 
patch-based spatial deconvolution, enhanced images suffer 
from small edge artifacts. This could be solved with a better 
stitching algorithm, e.g., a higher overlap percentage at the 
cost of reduced processing speed. However, it is possible to 
create training pairs with more computationally intensive 
spatially variant deconvolution approaches and train the 
SDV-GAN using those images. This shows the versatility 
of SDV-GAN in modeling different approaches while main-
taining its processing speed.
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