Journal of Imaging Informatics in Medicine
https://doi.org/10.1007/510278-025-01488-5

=

Check for
updates

Improved biometric quantification in 3D ultrasound biomicroscopy
via generative adversarial networks-based image enhancement

Ahmed Tahseen Minhaz' - Archana Murali? - Faruk H. Orge®*> . David L. Wilson®® . Mahdi Bayat’

Received: 20 November 2024 / Revised: 6 March 2025 / Accepted: 18 March 2025
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2025

Abstract

This study addresses the limitations of inexpensive, high-frequency ultrasound biomicroscopy (UBM) systems in visualizing
small ocular structures and anatomical landmarks, especially outside the focal area, by improving image quality and visibil-
ity of important ocular structures for clinical ophthalmology applications. We developed a generative adversarial network
(GAN) method for the 3D ultrasound biomicroscopy (3D-UBM) imaging system, called Spatially variant Deconvolution
GAN (SDV-GAN). We employed spatially varying deconvolution and patch blending to enhance the original UBM images.
This computationally expensive iterative deconvolution process yielded paired original and enhanced images for training
the SDV-GAN. SDV-GAN achieved high performance metrics, with a structural similarity index measure (SSIM) of 0.96
and a peak signal-to-noise ratio (PSNR) of 36.92 dB. Structures were more clearly seen with no noticeable artifacts in the
test images. SDV-GAN deconvolution improved biometric measurements made from UBM images, giving significant differ-
ences in angle opening distance (AOD, p <0.0001) and angle recess area (ARA, p <0.0001) measurements before and after
SDV-GAN deconvolution. With clearer identification of apex, SDV-GAN improved inter-reader agreement in ARA meas-
urements in images before and after deconvolution (intraclass correlation coefficient, [ICC] of 0.62 and 0.73, respectively).
Real-time enhancement was achieved with an inference time of ~40 ms/frame (25 frames/s) on a standard GPU, compared
to~93 ms/frame (11 frames/s) using iterative deconvolution. SDV-GAN effectively enhanced UBM images, improving
visibility and assessment of important ocular structures. Its real-time processing capabilities highlight the clinical potential
of GAN enhancement in facilitating accurate diagnosis and treatment planning in ophthalmology using existing scanners.
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Introduction
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bayat003 @umn.edu Ultrasound biomicroscopy (UBM) is a high-frequency, high-
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resolution, inexpensive imaging modality that is used for
imaging the anterior segment of the eye. UBM is crucial
for imaging ocular structures such as the scleral spur, iri-
docorneal angle, and ciliary body, providing insights into
glaucoma pathophysiology [1]. UBM has the unique capa-
bility of visualizing ocular structures beyond the opaque iris
(i.e., ciliary body) or in case the transparency of the anterior
segment is compromised due to an injury or ocular diseases.
Commercially available UBM systems (i.e., Ellex EyePrime
or Quantel Aviso) provide only 2D views of the anterior seg-
ment that do not provide sufficient anatomical context [2].
This limitation necessitated the development of 3D-UBM to
establish the anatomical context [3-8].

Commercially available 2D-UBM systems, consisting
of a mechanically swept, single transducer element, lack
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dynamic focusing capability, resulting in degraded image
quality beyond the focal depth of the probe. This degrada-
tion occurs due to the spatially varying wide point-spread
function (PSF) of the ultrasound (US) imaging system. The
spatially variant PSF can cause blurring of crucial ocular
structures relevant to glaucoma and other conditions. Many
biometric measurements related to the anterior chamber are
obtained from 2D-UBM images for glaucoma diagnosis and
surgeries, including anterior chamber depth and width, lens
vault, iris curvature, iris root distance, trabecular-ciliary
process distance, iris-ciliary process distance, angle meas-
urements, lens thickness, anterior lens radius of curvature,
anterior segment length, and more [9—15]. Accurate meas-
urements depend on the localization of different anatomical
landmarks, which PSF blurring can impact. Deconvolution
techniques mitigate the blurring effects and improve the
visualization of such structures. Deconvolution approaches
in imaging can be classified as blind or non-blind. In blind
deconvolution, the PSF is unknown or poorly determined,
and the algorithm estimates it from the image set through
iterative [16] or non-iterative [17] approaches, followed by
deconvolution. Non-blind or deterministic deconvolution
utilizes a known PSF to enhance the image. The PSF can
be measured based on the ultrasound system’s response to
scatterers or predicted theoretically [18]. Previous studies
have primarily focused on a spatially invariant PSF for com-
putational simplicity [19, 20]. Although these approaches
perform well within the focal depth, their performance
beyond the focal plane is limited due to the severe spatial
variability of the PSF away from the focal depth. Spatially
variant deconvolution approaches encounter issues with
patch-wise deconvolution, resulting in edge artifacts due
to patch-blending problems [21]. An alternative approach
involving general PSF derivation based on continually vary-
ing PSF has been proposed but is unsuitable for large images
[22]. Optimization-based spatially variant PSF deconvolu-
tion methods are computationally expensive, making them
challenging to implement in a real-time clinical setting.
3D-UBM generates approximately a thousand images per
scan; therefore, a faster deconvolution approach is required
to ensure feasibility in a clinical setting. Particularly for our
3D-UBM [3, 4], which generates approximately a thousand
images per scan, a faster deconvolution approach is required
to ensure feasibility in a clinical setting.

Deep learning has demonstrated remarkable success
in medical imaging tasks, i.e., anatomy or disease classi-
fication, detection, and segmentation [23-28]. Generative
adversarial networks (GANSs), a subgroup of deep learning
models, have been applied to tasks such as image synthesis,
denoising, and deblurring [29-41]. GANSs consist of two
competing networks, a generator and a discriminator, and
leverage these two networks to improve performance on a
specific task. GANs can be supervised, requiring source
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and target domain image pairs for training, or unsupervised,
eliminating the need for such pairs. Isola et al. proposed
pix2pix [29], a supervised conditional GAN model based on
cross-entropy and L1 loss (mean absolute error) that can per-
form image-to-image translation tasks. Wolterink et al. used
the pix2pix framework for low-dose CT denoising [30]. Was-
serstein distance has also been used along with perceptual
loss and L2 loss (mean squared error) for CT image denois-
ing [32] and deblurring [33]. Several 3D-GAN approaches
have been developed in MR and CT super-resolution images
[34, 37, 38]. Few studies have explored the application of
deep learning in image deconvolution [39-41], especially
in the case of highly spatially variant kernels such as those
seen in US. Tao et al. demonstrated that using multi-scale
image inputs for encoder-decoder-based recurrent network
yielded the best performance in the image deblurring task
on natural images [40]. Lee et al. proposed a generalized
deconvolution approach to solve image degradation [41].
These studies performed blurring of natural images with a
single blurring function to create blurred image-ground truth
image pairs for training deep neural networks. This differs
from 3D-UBM or US images, as the imaging system has a
spatially variant PSF and no ground truth.

In this work, we framed the image deconvolution task as
an image-to-image translation problem. We created paired
training data using original images and spatially variant
deconvolved images obtained via a traditional iterative
approach. This study aims to provide.

e acomprehensive analysis to assess the effects of decon-
volution in visualizing small objects through a phantom
and in vivo study,

e anew deep learning approach, Spatially Variant Decon-
volution GAN (SDV-GAN), that demonstrates improve-
ment in the baseline image-to-image translation model,
and

e evaluation of the clinical impact of SDV-GAN on visuali-
zation and biometric measurements of ocular structures.

Materials and Methods
Image Acquisition Using 3D-UBM

We developed the 3D-UBM system using the Quantel Aviso
50 MHz probe in conjunction with a motorized translation
stage (MTS50-Z8, Thorlabs Inc.) and a surgical microscope.
The probe was attached to a custom-printed holder on the
stage. The motor carefully moves the probe across the eye
at a constant speed, enabling image acquisition in the slow
scan direction (x-axis). Each image acquired is in the 2D y—z
plane. The system was calibrated to acquire a total of 1000
frames in each eye. The probe was fitted with a ClearScan
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cover to acoustically couple the probe to the eye without
introducing any discomfort. This configuration is shown in
Fig. 1.

UBM Image Enhancement via Iterative
Deconvolution Approach

Figure 2 shows the processing pipeline for creating image-
enhanced image training pairs for supervised training. Each
2D image (y-z) from a 3D-UBM volume was divided into
N overlapping patches (50% overlap), signifying N separate
depth intervals. The analytic PSF at each depth was esti-
mated using the Field II simulator for point scatterers [42,
43]. Each patch was deconvolved iteratively using the depth-
appropriate PSF. We used the Richardson-Lucy approach
for a fixed number of iterations. We used five iterations, as
more iterations generated more noise. Following deconvolu-
tion, the overlapped patches were blended by averaging to
generate an enhanced image. We repeated the process for
each 2D image in an entire 3D volume to create original and
enhanced image pairs.

Fig.1 3D-UBM imaging

system setup. The probe was X (slow
mounted on the motorized scan)
stage with a custom 3D-printed
adapter (left). Gently moving
the probe across the eye at a
constant speed produces a series Z
of 2D-UBM images (middle) <
that can be converted to a 3D
volume of the anterior segment
of the eye (right) 2
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Spatially Variant Deconvolution Generative
Adversarial Network (SDV-GAN)

We approached the challenge of spatially variant decon-
volution by framing it as a task of translating images
from one form to another. To accomplish spatially variant
deconvolution, we selected the pix2pix [29] as the back-
bone architecture, a variant of conditional GAN known for
its success in image translation applications. Conditional
GANSs are particularly useful when the input is known,
and the architecture of a GAN involves two networks: a
generator and a discriminator. Baseline generator network
is U-Net [24] shaped and was designed with an encoder,
a bottleneck layer, and a decoder, connected by skip con-
nections. The network configuration is detailed in Fig. 3.
We modified each encoding layer (blue) by adding residual
connections, as residual connections have shown to avoid
vanishing gradient problems in deep network training by
introducing shorter paths [44]. We also introduced an
attention gate [45] between the decoding layer (orange)
and its corresponding encoding layer to enable only rel-
evant information to flow through the skip connections.

Y

V4

[ 2D-uBMstack | | 3D-UBM volume |
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overlapping
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®' Deconvolution using iterative (Lucy-Richardson) approach

Fig.2 Enhancing UBM images using patch-wise, spatially variant deconvolution. Each image is divided into overlapping patches, and each

patch is deconvolved and blended to create an enhanced image
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Fig.3 Network architecture for SDV-GAN-based deconvolution. Original image is the input to the generator, and the generated and enhanced

image pairs are inputs to the discriminator

Details of the residual block and attention gate are pro-
vided in Fig. 3. The numbers of filters in the encoder are
64, 128, 256, 512, 512, 512, and 512. Features from a
decoding layer and the output of the attention gate are
concatenated as inputs to the next decoding layer. The
generator takes the original image I as input and maps it
to produce an estimate (1) of the enhanced image I. The
discriminator employed a PatchGAN approach, distin-
guishing between patches from the generated enhanced
image 7 and the real enhanced image I. The training pro-
cess included minimizing the discriminator’s adversarial
cross-entropy loss and the generator’s loss, which com-
bined adversarial loss with the L1 loss computed between
the estimated enhanced image I and the actual enhanced
image I. Through the minimization of these losses, the
generator was able to generate enhanced images.

Input images were rescaled to fall within the range of
[— 1, 1], a practice employed to ensure training stability
for the GAN [18]. We utilized the Adam optimizer, setting
the learning rate at 0.0001 for both the discriminator and
generator. A balance between L1-loss and cross-entropy
loss was maintained at a 100:1 ratio. The output images
generated by the generator were also rescaled within the
[— 1, 1] range due to the use of the hyperbolic tangent
(tanh) function as the final activation. The models under-
went 100 training epochs, with the highest structural simi-
larity index (SSIM) [31] achieved on the validation set
determining the best-performing model, which was then
saved for testing.

@ Springer

Experimental Details
Dataset
Dataset for GAN Training

We utilized a dataset consisting of 16 in vivo eye vol-
umes obtained through the 3D-UBM system. Each image
within the volume measured 1100 x 384 pixels and fea-
tured a spacing of 10 um X 42 um in the fast scan direction
(y—z plane). Each image was cropped axially and padded
laterally to 1024 x 512 for SDV-GAN input to make the
input size divisible by 2N. For each eye, we captured 1000
consecutive image frames. Consequently, the spacing in
the slower scan direction (x or nasal-temporal) was deter-
mined by the patient’s eye length in that dimension and
the clinician’s decision. Typically, we imaged an approx-
imately 16 mm region, yielding a spacing of 16 um in
the slow scan direction. The entire dataset was supplied
by the Center for Pediatric Ophthalmology and Adult
Strabismus at Rainbow Babies and Children’s Hospital
under an approved institutional review board (IRB) pro-
tocol (STUDY20190764). Written informed consent was
obtained from each participant. Before scanning, patients
received general anesthesia. Both normal and eyes with
ocular pathology were considered for GAN training.
From each volume, we selected 250 images, totaling 4000
images. Out of these, 12 eye volumes (3000 images) were
designated for GAN training, two volumes (500 images)
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for validation, and another two volumes (500 images) for
testing purposes.

Dataset for Evaluation of Biometric Measurements

Forty-seven images were selected from 3D-UBM eye
volumes of 18 patients with no history of glaucoma. The
scleral spur was detected by three ophthalmologists (5, 6,
and 18 years of experience), and the locations were aver-
aged. Each image can be divided into two radial images,
generating 94 radial images (Fig. 4). The spur could not be
accurately determined in nine images, leading to 85 images
for measurement. Following the accurate localization, two
expert readers (a senior Ph.D. student and a senior medical
student) made biometric measurements of the eye images.
The measurements are trabecular-iris angle (TTA), angle
opening distance (AOD), and angle recess area (ARA); all
measured 500 um away from the scleral spur [46].

Performance Metrics

To evaluate the performance of deconvolution in the digi-
tal phantom and SDV-GAN in image enhancement, we
employed the following metrics: (1) Contrast-to-Noise Ratio
(CNR): evaluates the detectability of anatomical structures
relative to the background, (2) Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE): quantify pixel-wise
differences between the generated and reference images, (3)
Peak Signal-to-Noise Ratio (PSNR): assesses reconstruction
quality, with higher values indicating better preservation of
image details, and (4) Structural Similarity Index (SSIM):
measures perceptual similarity between the enhanced and
reference images.

Fig.4 Multiplanar reformatting of 3D-UBM volume and scleral spur
localization. Multiplanar reformatting allows the extraction of radial
images from the volume that covers the entire 360° of the anterior
segment. Scleral spur can be located in these radial images, which is
crucial to anterior segment biometric measurements

Results

Enhancing Contrast and Resolution of Small
Features in UBM Through Deconvolution

Figure 5 demonstrates the effectiveness of deconvolution
in enhancing image quality. In single-element mechanical
sweep UBM or US imaging systems, the loss of contrast
in smaller features arises due to the wide PSF at various
depths. To mitigate this effect and restore the pre-convolved
version of the image, deconvolution can be employed. By
utilizing deconvolution, the blurring caused by the PSF can
be reversed, leading to improved image quality. The simu-
lation was carried out using the Field II ultrasound simula-
tor. The original and enhanced “disks” were presented in
log-scaled images. These disks had increasing diameters to
showcase the impact of deconvolution on different-sized fea-
tures. The deconvolution process significantly improved the
CNR, with CNR improvement ranging from 3.9 to 10.7 dB.
This improves the clarity of the disks, making them dis-
tinctly visible. We observe the highest CNR improvement in
visualizing the smallest disk, demonstrating the importance
of deconvolution in identifying small ocular structures. The
PSF required for deconvolution was estimated based on the
characteristics of the Quantel 50 MHz UBM system.

Physical Phantom Study: Deconvolution of UBM
Images of a Wire Phantom

To evaluate the effectiveness of spatially variant deconvo-
lution, we imaged a wire phantom at different depths and
stitched those images together (Fig. 6). Each of the images
is deconvolved using the spatially variant deconvolution
approach discussed previously. Visual quality assessment
shows that the point object before deconvolution suffers
from more spreading away from the focus. After spatially
varying deconvolution, the effects are minimized.

Effects of Deconvolution in Visualization of Ocular
Anatomy

Image quality is essential for precise assessment of ocular
structures in the anterior segment, especially when calculat-
ing biometrics crucial for diagnosis and treatment monitor-
ing. Qureshi et al. observed low agreement among readers
in ciliary body-related biometric measurements, attributing
this to the deeper location of the ciliary body within the tis-
sue [14]. Additionally, locating anatomical landmarks like
the scleral spur and Schlemm’s canal is challenging due to
the need for better contrast between different tissue types.
Spatially varying deconvolution addresses the issue of image
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Unknown tissue

reflectivity images

Fig.5 Deconvolution of ultrasound (US) images of simulated disks.
During imaging, the target object is convolved with the PSF of the
US imaging system (left). Deconvolution on simulated images shows

6.5 mm

10 mm
(focal length)

15.2 mm

I >

< I
<

-1.9 mm 0

» <
> <4

1.9mm-1.9 mm 0

1.9 mm

Fig.6 UBM images of a 40-um diameter wire before (left) and after
(right) deconvolution. The wire was imaged at different depths and
deconvolved with depth-appropriate PSF

quality degradation with depth, compensating for the lack
of focus outside the focal area. Figure 7 shows the effective-
ness of deconvolution in visualizing small structures, i.e.,
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Simulation images of
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Field Il US Simulator

Enhanced images of the same disks after
deconvolution using Richardson-Lucy algorithm

CNR improvement between the original (right-top) and enhanced
disks (right-bottom) on rescaled 8-bit images. The disks are of
increasing diameter (25 um, 50 um, 75 pm, and 100 um, respectively)

Schlemm’s canal in clinical images. Schlemm’s canal is an
important tissue in fluid drainage in the eye. In Schlemm’s
canal visualization, contrast is greatly improved, suggest-
ing that computational enhancement of UBM images can be
useful. Figure 8 shows a 3D volume rendering of the ciliary
body before and after convolution. Deconvolution improves
3D visualization in the ciliary body, which will be useful in
biometric measurement.

Performance Analysis of Proposed SDV-GAN

We compared SDV-GAN performance against baseline
approaches to generate enhanced images similar to the itera-
tive deconvolution approach. SDV-GAN produces visually
similar images to the iterative approach without introduc-
ing any major artifacts while also outperforming the base-
line model (i.e., pix2pix). Three representative example
images are shown in Fig. 9. Spatially varying deconvolu-
tion (iterative or SDV-GAN) improves the contrast of ocu-
lar structures, i.e., ciliary processes and scleral spur, in the
images. Table 1 shows a quantitative comparison of the
number of model parameters, inference time, and perfor-
mance metrics of SDV-GAN, the baseline model without
any attention gate or residual blocks, the baseline model
with an attention gate, and the baseline model with residual
blocks. We calculated commonly used metrics for image-to-
image translation: mean absolute error (MAE), root mean
squared error (RMSE), peak signal-to-noise ratio (PSNR),
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Fig.7 2D-UBM image of
Schlemm’s canal (red arrow)
and collector channel (yellow
arrow), before (red box on
top-left) and after (top-right)
deconvolution. Subsequent
deconvolved frames also show
contrast improvement (bottom)

Fig.8 3D volume rendering of
ciliary body before and after
deconvolution within the same
dynamic range. After deconvo-
lution, the edges of the ciliary
body are more visible and easily
distinguishable

and structural similarity index (SSIM). For 8-bit images,
the mean MAE and mean RMSE were ~0.97% and ~ 1.43%
of the intensity range. The mean PSNR value of 36.92 dB
shows excellent reconstruction quality. SSIM has been pro-
posed as a better indicator of image similarity compared
to RMSE and PSNR. The SSIM range is [ 1,1]. Our pro-
posed approach achieves a structural similarity score of
0.96, which ensures high similarity between the iterative
and SDV-GAN approaches. One-way ANOVA test on SSIM
scores shows a p-value <0.00001, indicating the mean of
SSIM of SDV-GAN in test images is significantly different
than the baseline, the baseline model with an attention gate,
and the baseline model with residual blocks.

Attention gate learns to suppress irrelevant regions of
an image while focusing on important structures relevant
to a specific task [45]. In our experiment, we observed
a small improvement (ASSIM = ~ 1%) over the baseline

Original

Enhanced

model by introducing the attention gate in the generator.
We also introduced residual connections in each encoder
layer, which provide better learning by mitigating the
vanishing gradient problem. Residual connections in the
encoder showed good improvement over the baseline only
(ASSIM = ~7%) in the test images. SDV-GAN combines
the effects of both the attention gate and the residual con-
nection and improvement training of the GAN. Adding
both features to SDV-GAN, we demonstrated improvement
in all metrics. Figure 10 shows a representative-generated
enhanced image from each model. We observed SDV-
GAN’s superior performance in mimicking the compu-
tationally expensive iterative spatially deconvolution
approach. The artifact in difference images comes from
patch-based deconvolution and stitching. We observed less
artifact in SDV-GAN-generated images compared to other
models.
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3D-UBM images with no
enhancement

3D-UBM images with iterative
deconvolution

3D-UBM images with SVD-
GAN

Fig. 9 Comparison of SDV-GAN and iterative deconvolution images.
Original, iteratively enhanced, and SDV-GAN-enhanced images are
shown in the first, second, and third columns, respectively. SDV-
GAN produces visually similar images to the iterative approach and

shows higher contrast in distinguishing ciliary processes (top), small
anechoic region (middle), and scleral spur localization (bottom) com-
pared to images with no enhancement

Table 1 Performance comparison of different models with respect to iterative deconvolution on 8-bit test images, best performance hihglighted

in bold
Models Metrics
Total generator Inference  Structural similar- Mean absolute error ~ Root mean Peak signal-
parameters (in mil- time (ms) ity index (SSIM) squared error  to-noise ratio
lions) (PSNR)
Baseline (pix2pix) 54.43 31.76 0.85+0.01 491+0.13 6.97+0.83 31.32+0.93
Baseline + attention gate 57.86 33.94 0.86+0.02 4.46+0.57 6.86+1.11 31.50+1.31
Baseline +residual blocks ~ 72.59 37.42 0.92+0.002 3.42+0.21 4.97+0.40 34.24+0.70
SDV-GAN 76.01 39.92 0.96 +0.001 248 +0.15 3.65+0.29  36.92+0.69

Effects of SDV-GAN in Biometric Measurements

Not only does deconvolution affect image quality, but it
can also affect biometric measurements made from UBM
images. Two experts performed biometric measurements on
85 radial UBM images that were acquired by the 3D-UBM
system. Table 2 shows how biometric measurements change
before and after the SDV-GAN approach on three com-
monly measured biometrics in UBM images. We observed
significant differences in mean AOD500 and ARA500

@ Springer

measurements for both readers. However, differences in TIA
measurements were not conclusive. All three metrics rely on
the localization of anatomical landmarks, i.e., the apex of the
iris recess and the scleral spur, which are crucial for diagnos-
ing glaucoma. Accurate localization is difficult depending on
the types of glaucoma, and reader variability exists even in
the cases where these landmarks are visible. Deconvolution
improves contrast and can lead to better localization of the
apex and spur, which is crucial to these biometrics. Decon-
volution can improve agreement between readers in some
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Baseline (pix2pix) Baseline w. Attention gate

Fig. 10 Image enhancement performance evaluation of SDV-GAN
and baseline models in generating target-enhanced images. Sample-
generated enhanced images from the baseline model (without atten-
tion gate or residual blocks), baseline with attention gate, baseline
with residual blocks, SDV-GAN, and the actual target enhanced

Baseline w. Residual block

Mean Absolute Difference: 3.61

Target
Iterative spatially

SDV-GAN variant deconvolved image

3
/4

Mean Absolute Difference: 2.66

30
25
20
15
10
5

0

image via iterative deconvolution are shown from top-left to top-
right. Bottom row shows the difference images between the output
of each model-and the target. Lowest mean absolute difference was
observed in SDV-GAN-generated images

Table 2 Comparison of

. . Reader 1
biometric measurements before

Reader 2

and after deconvolution

Significant difference in mean (p <0.0001)
Significant difference in mean (p <0.0001)
Significant difference in mean (p <0.0001)

No significant difference in mean (p > 0.05)
Significant difference in mean (p <0.0001)
Significant difference in mean (p <0.0001)

TIAS500

AOD500

ARAS500
Table 3 Inter-reader agreement Before After
(ICC-score) between readers SDV- SDV-
1 and 2 before and after GAN GAN
deconvolution

TIA500. 091 0.90

AOD500 0.92 0.92

ARAS500 0.62 0.73

biometric measurements. We calculated the intra-class cor-
relation coefficient (ICC) to evaluate the agreement between
the two readers. Table 3 shows the agreement between read-
ers 1 and 2 before and after deconvolution for three separate
measurements. Agreement improved after deconvolution for
the ARA measurement, while agreement in TIA and AOD
measurements did not change.

Speed Comparison Between Iterative
and GAN-Based Approaches

We compared the performance of deconviucy function of
MATLAB with our proposed GAN-based deconvolution.

Iterative Lucy-Richardson approach has a time-complex-
ity of O(mn), where m and n are the number of rows and
columns in the image. Also, the algorithm scales linearly
with respect to the number of iterations. 3D-UBM pro-
duces volumes of dimension 1100 x 384 x 1000. To pro-
cess a single frame with a constant PSF across the image,
with iteration number, i=5, MATLAB’s implementation
takes an average of 85 ms to complete. With patch-wise
spatially variant deconvolution, MATLAB’s implementa-
tion takes an average of 93 ms to complete. GAN-based
deep learning approaches (baseline or SDV-GAN) can pro-
cess a single frame within 32-40 ms, leading to almost
3 x faster processing (Table 1). Attention gate provides a
small increase in model performance without introduc-
ing many learnable parameters. In comparison, residual
blocks increase model performance by a large margin, at
the expense of introducing large numbers of model param-
eters. SDV-GAN incorporates both features. The increased
number of model parameters and slightly higher inference
time is justified with higher performance, and it does not
impact clinical usability. All experiments were performed

@ Springer
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in an Alienware Aurora R13 PC (24-core CPU, 128 GB
RAM, NVIDIA RTX 3090) and MATLAB R2022b.

Conclusions

In this work, we described a spatially variant deconvolu-
tion approach using a generative adversarial network (SDV-
GAN) for improved visualization of small ocular structures.
US imaging systems have depth-dependent, spatially vary-
ing PSF. Spatially variant deconvolution approaches are
not trivial and do not scale well for large images. 3D-UBM
and clinical UBM produce high-resolution US images of
the anterior segment of the eye. From these images, several
biometrics (e.g., TIA, AOD, ARA) are measured for glau-
coma diagnosis and monitoring. Our experiments showed
that biometric measurements before and after deconvolu-
tion show significant changes in AOD (p <0.0001) and ARA
(» <0.0001) measurements. We also observed reader agree-
ability improvement (AICC =0.11) after deconvolution in
ARA measurement. This is likely due to the better contrast
leading to better localization of the apex post-deconvolution.

SDV-GAN can mimic computationally expensive spa-
tially variant iterative deconvolution approaches and be
deployed in real-time US analysis. 3D-UBM produces
1000 images per eye volume at 10-15 frames/s. Spatially
variant deconvolution in real time is a scaling challenge.
To overcome this, we developed SDV-GAN, where itera-
tive spatially variant deconvolved images were used as
ground truths for training. Comparison between ground
truth and generated images shows high structural similarity
(SSIM=0.96+0.001), ensuring the generated images are
similar to what we observe via the iterative approach. In
our experiments, we found that the iterative approach can
process a single UBM frame (1100 X 384) in 85-93 ms,
leading to a frame rate of approximately 10—12 frames/s.
In reality, it will be lower in low-performance computers
that US systems are shipped with, or in point-of-care US. In
comparison, our SDV-GAN-based approach processes a sin-
gle image frame in 40 ms, which leads to a processing frame
rate of ~25 frames/s. Commercially available UBM probes
(Quantel, EyePrime) have frame rates in the range of 10-15
frames/s. This implies the real-time processing of images is
possible, allowing clinical use. With the added complexity
of SDV-GAN compared to the baseline model, it is slightly
more computationally expensive. However, the real-time
processing is not affected. Since our proposed approach
improves biometrics measurements, even slightly slower
processing speeds may be acceptable in clinical workflows
where real-time visualization is not always required (e.g.,
post-processing for diagnostic analysis). There are a few
limitations to this study. First, the dataset consists of only
16 eyes, which limits the statistical power of our findings.

@ Springer

Additionally, there is an inherent correlation among slices
from the same eye, which may affect model training and
evaluation. While our approach leverages a large number of
images, the dependence among slices must be considered
when interpreting results. Furthermore, the current study
focuses primarily on healthy eyes, and broader validation
in diverse patient populations, including those with ocular
pathology, is necessary. Future work will involve multi-
center studies with a larger, more diverse cohort to improve
the generalizability and clinical applicability of the proposed
method. Second, as our training pairs were created using
patch-based spatial deconvolution, enhanced images suffer
from small edge artifacts. This could be solved with a better
stitching algorithm, e.g., a higher overlap percentage at the
cost of reduced processing speed. However, it is possible to
create training pairs with more computationally intensive
spatially variant deconvolution approaches and train the
SDV-GAN using those images. This shows the versatility
of SDV-GAN in modeling different approaches while main-
taining its processing speed.
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