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Abstract— Microvessel (MV) imaging using non-contrast US 
is challenging due to low blood echo SNR, the presence of 
spectrally overlapping tissue clutter, and noise. Spatiotemporal 
clutter removal, e.g., via singular value decomposition (SVD), 
requires parameter tuning and are computationally expensive. In 
this work, we proposed an end-to-end deep learning approach to 
remove tissue clutter and extract blood signals from US ensemble 
in a purely data-driven fashion. Our deep learning approach 
accelerates the decluttering process and provides a generalizable 
framework to adapt to realistic scenarios via diversly augmented 
data. In this preliminary study, we scanned a day 8 developing 
chicken embryo to collect US ensembles of different regions of 
the embryo. Training data was created using a fine-tuned SVD 
for tissue clutter removal and to train a 2D U-net. The proposed 
deep learning approach can reconstruct MV from US ensembles 
(structural similarity index of 0.83 ± 0.02 compared to processing 
via SVD) implying good reconstruction. Our end-to-end deep 
learning approach is also 2x faster than the traditional SVD 
approach. Deep learning based MV imaging using non-contrast 
US shows promise in reconstructing MV in presence of different 
tissue motions and can be extended to perform under various 
SNR, noise, and motion conditions. 
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I. INTRODUCTION 
Microvasculature imaging has a diverse range of applications 
such as microvascular disease, neuroimaging, tumor 
microenvironment monitoring, etc. Microvascular imaging 
with US without a contrast agent is difficult due to the presence 
of tissue clutter. Singular value decomposition (SVD) has been 
used to remove tissue clutter echo from blood flow signals 
[1,2]. Low-rank approximation via SVD requires choosing an 
optimum threshold that can remove the tissue clutter. This 
threshold can vary greatly and requires fine-tuning. Moreover, 
depending on the ensemble length (number of frames) and  

 

field-of-view, the computational cost of SVD thresholding 
(SVT) based tissue removal can be very high. Previously, we 
presented a model-based deep residual network that 
demonstrated the ability of a simplified network to compensate 
for the not carefully adjusted rank value when using SVT [1]. 

A powerful Deep learning (DL) based vascular imaging 
approach can approximate or extend SVT for variable 
ensemble lengths with reduced computational cost during test 
time, making vascular imaging possible with a fast acquisition, 
especially on resource-constrained portable devices. A properly 
trained DL approach will be independent of tissue rank and 
allow integration of tissue motion, low SNR, etc. in form of 
data augmentation. Therefore, we proposed an end-to-end deep 
convolutional neural network-based approach for removing 
tissue clutter from US data to image microvessel (MV). 

II. METHODS 

A. Data Acquisition 
We scanned a day 8 chicken embryo using a Vevo 3100 
(VisualSonics Inc.) system and an MX250 transducer (center 
transmit frequency: 21 MHz). The focus was set halfway down 
the depth of the embryo at 7 mm. Embryos were grown 
according to Meijlink et al.[2] and acquired locally from Meyer 
Hatchery (Polk, OH). Briefly, embryos were stored at 37℃ and 
50-60% humidity for 8 days in an incubator with automatic egg 
turning. On day 8, embryos were carefully extracted from the 
shell and placed in a weigh boat that was kept at 37℃ until 
imaging began. The embryo chorioallantoic membrane (CAM) 
surface was directly coupled with the ultrasound transducer 
using ultrasound gel. 3D imaging data was acquired by 
imaging the entire embryo with a step size of 50µm. Steps 
were generated precisely with a customized motorized stage 
(MTS50/M-Z8, Thorlabs Inc.). The experiment took 
approximately 3 hours and the embryo’s heart continued 



beating for the duration. Spatiotemporal (IQ) data were 
extracted from the experiment.  

B. SVT processing of RF data 
Spatiotemporal IQ data 𝑠𝑠  (x,y,t) was processed via SVT 

reported before [3], [4]. Spatiotemporal data 𝑠𝑠 contains IQ data 
containing amplitude and phase of the US echo which are both 
used for removing tissue clutter. Blood consists of flowing 
heterogeneous scattering elements (e.g., blood cells, platelets, 

etc.) in a fluid. This produces a complicated, high-rank 
spatiotemporal echo matrix. We computed a low-rank 
approximation of the complex IQ data and removed the first 
𝑘𝑘 = 30 singular vectors spanning the signal to remove tissue 
clutter.  

C. Deep neural network training 
The magnitude of IQ data, |s| before and after thresholding 

was used as input and ground truth to train a deep neural 
network respectively, shown in Figure 2. The input and the 
output dimensions were x×y×t, where x×y was the size of the 
area imaged and t represents the number of frames. In our 
experiment, x = 352, y = 288, t = 128. Input volumes first were 
reshaped into a 2D input array of size (352×288) ×128. Patches 
of size 352×128 were fed to a 2D U-net [5] network for its 
prior use in medical image regression tasks [6]. Processing the 
input this way led to each A-line getting processed individually 
over time (Figure 2). We trained a U-net (encoder depth 3) for 
100 epochs with an initial learning rate of 0.01 and a learning 
rate drop factor of 0.2. Early stopping was used to avoid 
overfitting. Mean squared error (MSE) was used as the loss 
function to train the network. We collected IQ data from 131 
locations, 17 of which were discarded due to poor data quality. 
Data from three separate regions of the embryo were divided 
into training (69), validation (29), and testing (16) to ensure no 
overlap. The training and validation data were collected from 
embryo heart, while the testing data were collected from the 
brain region of the embryo. During test time, patches of test 
ensemble were processed individually and assembled.  

III. RESULTS 
Figure 3 shows that deep neural network can successfully 

remove tissue clutter. We found structural similarity index of 
0.83 ± 0.02 in log-normalized vascular images between SVT 
images and DL predictions, implying good reconstruction. DL 
based approach was also 2x faster than SVT approach. 
However, while SVT works on both amplitude and phase data,   

Figure 1. Magnitude of the complex IQ data, |s| before 
(top) and after (bottom) SVT. Top-left and bottom-left 
show the US ensemble. Top-right and bottom right show 
log-normalized intensity projection of the ensemble. 

Figure 2. Proposed end-to-end DL approach to extract MV from US ensemble. A 2D U-net was used to train the 
input patches. During testing, patches were evaluated and stitched together to create the MV image. 



proposed deep learning predictions are from amplitude of IQ 
data alone so it can be applied to any imaging system without 
requiring raw data. Addition of phase information, via an 
appropriate network architecture, can potentially improve 
performance. 

IV. CONCLUSION 
Our proposed deep neural network can successfully remove 
tissue clutter from US ensemble and makes the process faster 
than traditional SVT approach. While SVT relies on careful 
selection of rank, DL can be extended to adapt to different 
scenarios to admit realistic tissue motions and under noisy 
conditions. While SVT requires complex IQ data of high 
ensemble, DL can also extract vessel from the amplitude signal 
for a shorter ensemble length.  
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Figure 3. A. Intensity image acquired from raw IQ data 
acquired near brain and spine of day 8 chicken embryo, B. 
Log-normalized intensity projection of MV using SVT, C. 
Log-normalized intensity projection of MV proposed DL 
approach. 
 


	I. Introduction
	II. Methods
	A. Data Acquisition
	B. SVT processing of RF data
	C. Deep neural network training

	III. Results
	IV. Conclusion
	Acknowledgment
	References


