End-to-end deep learning for tuning-free non-contrast
ultrasound microvessel imaging
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Abstract— Microvessel (MV) imaging using non-contrast US
is challenging due to low blood echo SNR, the presence of
spectrally overlapping tissue clutter, and noise. Spatiotemporal
clutter removal, e.g., via singular value decomposition (SVD),
requires parameter tuning and are computationally expensive. In
this work, we proposed an end-to-end deep learning approach to
remove tissue clutter and extract blood signals from US ensemble
in a purely data-driven fashion. Our deep learning approach
accelerates the decluttering process and provides a generalizable
framework to adapt to realistic scenarios via diversly augmented
data. In this preliminary study, we scanned a day 8 developing
chicken embryo to collect US ensembles of different regions of
the embryo. Training data was created using a fine-tuned SVD
for tissue clutter removal and to train a 2D U-net. The proposed
deep learning approach can reconstruct MV from US ensembles
(structural similarity index of 0.83 £ 0.02 compared to processing
via SVD) implying good reconstruction. Our end-to-end deep
learning approach is also 2x faster than the traditional SVD
approach. Deep learning based MV imaging using non-contrast
US shows promise in reconstructing MV in presence of different
tissue motions and can be extended to perform under various
SNR, noise, and motion conditions.
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I. INTRODUCTION

Microvasculature imaging has a diverse range of applications
such as microvascular disease, neuroimaging, tumor
microenvironment monitoring, etc. Microvascular imaging
with US without a contrast agent is difficult due to the presence
of tissue clutter. Singular value decomposition (SVD) has been
used to remove tissue clutter echo from blood flow signals
[1,2]. Low-rank approximation via SVD requires choosing an
optimum threshold that can remove the tissue clutter. This
threshold can vary greatly and requires fine-tuning. Moreover,
depending on the ensemble length (number of frames) and
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field-of-view, the computational cost of SVD thresholding
(SVT) based tissue removal can be very high. Previously, we
presented a model-based deep residual network that
demonstrated the ability of a simplified network to compensate
for the not carefully adjusted rank value when using SVT [1].

A powerful Deep learning (DL) based vascular imaging
approach can approximate or extend SVT for variable
ensemble lengths with reduced computational cost during test
time, making vascular imaging possible with a fast acquisition,
especially on resource-constrained portable devices. A properly
trained DL approach will be independent of tissue rank and
allow integration of tissue motion, low SNR, etc. in form of
data augmentation. Therefore, we proposed an end-to-end deep
convolutional neural network-based approach for removing
tissue clutter from US data to image microvessel (MV).

II. METHODS

A. Data Acquisition

We scanned a day 8 chicken embryo using a Vevo 3100
(VisualSonics Inc.) system and an MX250 transducer (center
transmit frequency: 21 MHz). The focus was set halfway down
the depth of the embryo at 7 mm. Embryos were grown
according to Meijlink et al.[2] and acquired locally from Meyer
Hatchery (Polk, OH). Briefly, embryos were stored at 37°C and
50-60% humidity for 8 days in an incubator with automatic egg
turning. On day 8, embryos were carefully extracted from the
shell and placed in a weigh boat that was kept at 37°C until
imaging began. The embryo chorioallantoic membrane (CAM)
surface was directly coupled with the ultrasound transducer
using ultrasound gel. 3D imaging data was acquired by
imaging the entire embryo with a step size of 50pum. Steps
were generated precisely with a customized motorized stage
(MTS50/M-Z8, Thorlabs Inc.). The experiment took
approximately 3 hours and the embryo’s heart continued
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Figure 1. Magnitude of the complex IQ data, |s| before
(top) and after (bottom) SVT. Top-left and bottom-left
show the US ensemble. Top-right and bottom right show
log-normalized intensity projection of the ensemble.

beating for the duration. Spatiotemporal (IQ) data were
extracted from the experiment.

B. SVT processing of RF data

Spatiotemporal 1Q data s (x,y,t) was processed via SVT
reported before [3], [4]. Spatiotemporal data s contains 1Q data
containing amplitude and phase of the US echo which are both
used for removing tissue clutter. Blood consists of flowing
heterogeneous scattering elements (e.g., blood cells, platelets,
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etc.) in a fluid. This produces a complicated, high-rank
spatiotemporal echo matrix. We computed a low-rank
approximation of the complex IQ data and removed the first
k = 30 singular vectors spanning the signal to remove tissue
clutter.

C. Deep neural network training

The magnitude of 1Q data, |s| before and after thresholding
was used as input and ground truth to train a deep neural
network respectively, shown in Figure 2. The input and the
output dimensions were x Xy x¢, where xXy was the size of the
area imaged and t represents the number of frames. In our
experiment, x = 352, y = 288, t = 128. Input volumes first were
reshaped into a 2D input array of size (352x288) x128. Patches
of size 352x128 were fed to a 2D U-net [5] network for its
prior use in medical image regression tasks [6]. Processing the
input this way led to each A-line getting processed individually
over time (Figure 2). We trained a U-net (encoder depth 3) for
100 epochs with an initial learning rate of 0.01 and a learning
rate drop factor of 0.2. Early stopping was used to avoid
overfitting. Mean squared error (MSE) was used as the loss
function to train the network. We collected 1Q data from 131
locations, 17 of which were discarded due to poor data quality.
Data from three separate regions of the embryo were divided
into training (69), validation (29), and testing (16) to ensure no
overlap. The training and validation data were collected from
embryo heart, while the testing data were collected from the
brain region of the embryo. During test time, patches of test
ensemble were processed individually and assembled.

III. RESULTS

Figure 3 shows that deep neural network can successfully
remove tissue clutter. We found structural similarity index of
0.83 + 0.02 in log-normalized vascular images between SVT
images and DL predictions, implying good reconstruction. DL
based approach was also 2x faster than SVT approach.
However, while SVT works on both amplitude and phase data,
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Figure 2. Proposed end-to-end DL approach to extract MV from US ensemble. A 2D U-net was used to train the
input patches. During testing, patches were evaluated and stitched together to create the MV image.



Figure 3. A. Intensity image acquired from raw IQ data
acquired near brain and spine of day 8 chicken embryo, B.
Log-normalized intensity projection of MV using SVT, C.
Log-normalized intensity projection of MV proposed DL
approach.

proposed deep learning predictions are from amplitude of 1Q
data alone so it can be applied to any imaging system without
requiring raw data. Addition of phase information, via an
appropriate network architecture, can potentially improve
performance.

IV. CONCLUSION

Our proposed deep neural network can successfully remove
tissue clutter from US ensemble and makes the process faster
than traditional SVT approach. While SVT relies on careful
selection of rank, DL can be extended to adapt to different
scenarios to admit realistic tissue motions and under noisy
conditions. While SVT requires complex 1Q data of high
ensemble, DL can also extract vessel from the amplitude signal
for a shorter ensemble length.
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