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INTRODUCTION

METHODS

* Microvascular imaging with US without a contrast
agent is difficult due to the presence of tissue clutter.

» Singular value decomposition (SVD) has been used

to remove tissue clutter echo from blood flow signals
[1,2].
* Challenges:
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tissue clutter removal 5 expensive 1
* Deep learning (DL) faased vascular imaging approach

can

« approximate or extend SVT, e.g., for variable
ensemble lengths, without explicit fine tunning

 reduce computational cost during test time,
making vascular imaging possible with a fast
acquisition, especially on resource-constrained
portable devices.

 Extend utility across platforms via transfer
learning and augmentation

 Adapt to tissue+blood behavior, variable SNR,
etc. via additional learning and augmentation.

 We proposed an end-to-end deep convolutional
neural network-based approach for removing tissue
clutter from US data to image microvessel (MV).

Figure 2: SVD
accelerated rSVD
computationally

IMAGING EXPERIMENT

 We scanned a day 8 chicken embryo using a Vevo
3100 (VisualSonics Inc.) system and an MX250
transducer (center transmit frequency: 21 MHz).
* Focal depth: 7 mm into the embryo.
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Figure 3. Left: 3D-UBM system, Center: 8-day old

chicken embryo. Right: Sample image of the embryo

In the brain region.

Embryos were grown according to Meijlink et al.[3]
 Embryos were stored at 37°C and 50-60%
humidity for 8 days in an incubator with
automatic egg turning.

 On day 8, embryos were carefully extracted from the
shell and placed in a weigh boat that was kept at 37°C
until imaging began.

* The embryo chorioallantoic membrane (CAM) surface
was directly coupled with the ultrasound transducer
using ultrasound gel.

« 3D imaging data was acquired by modifying
previously developed 3D-UBM system [4] with a step
size of 50um.

* The experiment took approximately 3 hours and the
embryo’s heart continued beating for the duration.

o

Spatiotemporal data processing

« Spatiotemporal |IQ data s (x,y,t) was processed via
SVT reported before [2], [5].

« Spatiotemporal data s contains IQ data containing
amplitude and phase of the US echo which are both
used for removing tissue clutter.

 Blood consists of flowing heterogeneous
scattering elements (e.g., blood cells, platelets,
etc.) in a fluid. This produces a complicated, high-
rank spatiotemporal echo matrix.

« We computed a low-rank approximation of the
complex 1Q data and removed the first k = 30 singular
vectors spanning the signal to remove tissue clutter.
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Figure 4. Magnitude of the complex IQ data, |s|
before (top) and after (bottom) SVT. Top-left and
bottom-left show the US ensemble. Top-right and
bottom right show log-normalized intensity projection
of the ensemble.

Deep neural network training
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Figure 5. Proposed end-to-end DL approach to extract
MV from US ensemble. A 2D U-net was used to train
the input patches. During testing, patches were
evaluated and stitched together to create the MV
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 We collected spatiotemporal IQ data from 114 locations
along the embryo.

 First 128 frames were chosen for further processing,
leading to 1Q data of 352x288x128 for our deep learning
approach.

« Data from three separate regions of the embryo were
divided into training (69 from heart), validation (29 from
heart), and testing (16 from brain) to ensure no overlap.

RESULTS

« SSIM =

Figure 7. A. Intensity image
acquired from raw |Q data
acquired near brain and spine
 of day 8 chicken embryo, B.
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0.83 = 0.02 in log-normalized vascular
iImages between SVT images and DL predictions,
Implying good reconstruction.

 While SVT works on both amplitude and phase data,

proposed deep learning predictions are from
amplitude of 1Q data alone so it can be applied to any
Imaging system without requiring raw data.

DL based approach was also 2x faster.

DISCUSSION

* QOur proposed deep neural network can successfully

remove tissue clutter from US ensemble and makes
the process faster than traditional SVT approach.

 While SVT relies on complex IQ data and careful

selection of rank, DL can be extended to adapt to
amplitude data only and different scenarios to admit
realistic tissue motions and under noisy conditions.
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